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(ABSTRACT)

1
A method is presented for calculating the shape sensitivity of a wing aeroelasti¢ response

with respect to changes in geometric shape. Yates' modified strip method is used in
!

conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency,

and reduced frequency of the wing. Three methods are used to calculate the sensitivity

of the eigenvalue. The first method is purely a finite difference calculation of the

eigenvalue derivative directly from the solution of the flutter problem corresponding to

the two different values of the shape parameters. The second method uses an analytic

for the eigenvalue sensitivities of a general complex matrix, where the deriv- iexpression

atives of the aerodynamic, mass, and stiffness matrices are computed using a fail',o _if-
I

ference approximation. The third method also uses an analytic expression for the

eigenvalue sensitivities but the aerodynamic matrix is computed analytically. All three

methods are found to be in good agreement with each other. The sensitivities of the

eigenvalues were used to predict flutter speed, frequency, and reduced frequency. These

approximations were found to be in good agreement with those obtained using a com-

plete reanaljsis. However, it is recommended that higher order terms be used in the

calculations in order to assure greater accuracy.
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1.0 Introduction.
II Ill

I.I Introduction and Background

Flutter, an aeroelastic instabdity, is a self-sustaining oscillation that involves the coupl-

ing of inertia[, elastic, and aerodynarruc forces. Tail flutter was the earliest documented

case of dynarmc aeroetastic instabliity. It was discovered on the twin-engined Handley

Page 0/400 Bomber at the beginrung of World War I that the fuselage and tail had two

principal modes of vibration. In the first mode, the elevators oscillated about their hinges

IS0 degrees out of phase, because the elevators were not attached by a torque tube. In

the second mode, the fuselage oscillated in torsion. The coupling between these two

modes resulted in a self-sustained oscillation [I].

Modern aircrafts are subjected to numerous types of flutter phenomena. CI, ssical flutter

is associated _nth potential flow and involves coupling of two or more degrees of free-

dom. Nonclassical flutter is concerned with oscillations due to boundary, layer effects,

such as separeted flow and reattaching ,'lows. Nonclassical flutter is more difficult to

Introduction. I
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analyze from a theoretical standpoint. Onl) classical flutter will be analyzed in this

presentation.

Flutter analysis capablities have been available for well over four decades. Loring [2]

developed a general approach to the flutter problem in 19.41. Yates [3] developed a

modified strip analysis to analyze flutter characteristics for finite-span swept and un-

swept wings at subsonic and supersonic speeds in 1958. This method is still used today

to calculate the lift and moment forces. For example, Landsberger and Dugundji [4] used

these expressions, with a modification for camber effects given by Spielberg [5], to study

the flutter and divergence of a composite plate. The present day computers allow still

more complex aerodynamic programs to be developed and used. To name a few, the

unsteady vortex.lattice method developed by Strganac and Mook [6], the double lattice

method developed by Waldman [7], and the MCAERO code developed by Hawk and

Bristow [81.

The dynamics of any physical system is important from a designer's view point. "l'he

onset of flutter in a modem aircraft will involve large oscillatory distortions of' the

st_,..ctural components. Therefore, it would be advantageous to the designer to have a

tool which can be used to predict the changes in flutter with the changes in basic shape

parameters.

Sensitivity analysis was first recognized as a useful tool for assessing the effects of

changing parameters in mathmatical models of control systems. The gradient based

mathematical programming method used in optimal control and structural optimization

furthered the development of sensitivity derivatives, because sensitivity derivatives are

used in search directions to find optimum solution [9,10,11,121. Inefficient optimization

programs lead to further interest in eflicient calculation of sensitivity derivatives. As a

Introduction. 2
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result, sensitivity analysis has become a versatile design tool, rather than just an instru-

ment of optimization programs [13].

B

Shape sensitivity analysis of any physical system under aeroelastic loads can be impor-

i tant from different points of view: 1) to understand and predict the system's response

)' and 2) to optimize the response of the system for a set ofphysical constraints. In order

to predict or optimize the response the sensitivi_' derivatives must be calculated. This

can be done by a finite difference calculation or analytical calculation of the sensitivity

derivatives. Analytical sensitivity analysis has found increased interest in engineering

" design. The analytical derivatives eliminate the uncertainty in the choice of step size,

- which if too large can lead to truncation errors and if too small can lead to ill-

conditioning.

Adelman and Haftka [13] have shown that structural sensitivity analysis has been avail-

able for over two decades. Structural sensitivity analysis has been sufticient in the past

because sizing variables such as plate thickness and cross-sectional areas effect the mass

and stiffness properties of the airframe but, not its basic geometry. Therefore, aero-

dynamic sensitivity analysis capability has been limited in development until recently.

For example, Rudisill and Bhatia [14] developed expressions for the analytical deriva-

tives of the eigenvalues, reduced frequency a.nd flutter speed with respect to structural

parameters for use in minimizing the total mass. However, this method is limited because

) the structural parameters are sizing variables such as cross-sectional areas, plate thick.

hess and diameters of spars.

Pedersen and Seyranian (15], examined the change in flutter load as a function orchange

_., in stiffness, mass, boundary conditions or load distribution. They showed how sensitivity
.!

i Introduction. 3
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analysis can be performed without any new eigenvalue analysis. The solution to the main

and an adjoint problcm provide all the necessary informanon tbr evaluating sensitivities.

Their paper mainly focuses on column and beam critical load distributions.

Hawk and Bristow [8] developed aerodynamic sensitivity analysis capabilities in subcrit-

ical compressible flow. They first analyzed a baseline configuration, and then calculated

a matrix _.ontaining the partial derivatives of the potential at each control point with

respect to each known geometric parameter by applying a first-order expansion to the

baseline configuration. The matrix of partial derivatives is used in each iteration cycle

to analyze the perturbed geometry. However, this analysis only handles chordwise per- l

turbation distributions, such as changes in camber, thickness and twist. A new approach,

which is still under development, has been proposed by Yates [16] that considers general

geometric variations, including planform, for subsonic, sorfic and supersonic unsteady,

nonplanar lifting-surface theory.

Banhelemy and Bergen [17] explored the analytical shape sensitivty derivatives of a wing

static aeroelastic response. The,,' found that the second derivatives of the wing's

aeroelastic characteristics, such as section lift, angle of attack, rolling moment, induced

drag, and divergence dynamic pressure, for subsonic subcritical flow, with respect to

geometric parameters are small enough to be well approximated by sensitivity based

linear approximations. These approximations are vaLidwithin a range that are useful to

the designer in the initial design phase.

This work is an extension of previous work preformed by Barthelemy and Bergen [17],

and details the theoretical and computational derivation of a method to obtain the sen-

sitivity of a wing flutter response to changes m its geometry. Specifically, the objective

is to determine the derivatives of flutter speed and frequency with respect to wing area,

Introduction. 4
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aspect ratio, taper ratio, and sweep angle. Chapter 2 gives a brief description of the

structural formulation which was originally formulated at the NASA Langley Reascarch

J Center by Giles [18]. The program is based upon a Raleigh-Ritz formulation in which

the displacement functions are made up of polynomial expressions. The aerodynamic
t

| formulation is presented in Chapter 3. The expression for lift and moment are derived

_' from potential flow theory and have been modified to account for finite span. In

Chapter 4, the formulation is validated using examples found in other works. Once there

i is sufficient confidence in the flutter speed prediction capablities, it is shown that the

sensitivity analysis v,ill predict the flutter speed for changes in the structural parameters.

Three different approaches are used to obtain the sensitivity of the flutter speed, tre-

quency, and reduced frequency to various shape parameters. These inctude:

(i) a purely numerical approach using the finite difference method;

(ii) a semi-analytical method that uses an analytic ex[, ession given

by Murthy and Haftka [19], for calculating the sensitivity of the

eigenvalues of a generalized eigenvalue problem and a

/'mite difference approximation of the derivatives ofthe I

aerodynamic, mass and stiffness matrices vAth respect to the

geometric parameters; and

(iii) an analytic approach that uses the analytic expression for

calculating the sensitivity of the eigenvalues and

an analytically derived expression for the sensitivity of the

aerodynamic matrix witia respect to geometric parameters.

Chapter 6 gives conclusions and suggestions for future work.

Introduction, 3
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2.0 Structural Model
L

i

;i
I

,q

2.1 Introduction !
'1

This chapter presents the structural formulation which was originally programmed by
4 I

Giles [18]. The program is based upon a Ritz solution technique using the the energy I

functionals for a laminated plate which includes the bending and stretching of the refer-

ence surface. This program is capable of analyzing unsymmetric wing box sections aris-

ing from airfoil camber, laminate sequences, or different thicknesses in upper and lower

cover skins. Thermal loadings can be represented as temperature distributions over the

planform of the cover skins.

The aerodynamic formulation restricts the chordwise length to remain straight during

oscillations, therefore only high aspect ratio wings will be analyzed in this presentation.

Only bending and torsional deformations are considered in this analysis procedure. In

the theory of plates, the Kixchhoffassumption is made that lines normal to the reference

plane remain straight and normal after deformations.

StructuralModal 6
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The planform geometry of the wing is represented by a trapezoidal segment. To repre-

sent cranked wing boxes, multiple trapezoidal segments can be defined. Each segment

has a separatc local coordinate system. The local coordinates are nondimensional such

that _ refers to a fraction of the chord and t/a fraction of the span as shown in Figure

1.

Figure 2 illustrates a possible geometry of the wing box and coordinate system. The

mid-camber surface is measured from a reference plane. The distance, Zc, is represented

as a polynomial in the global coordinates x and y.

Z c (x,y) = Zoo + zlo x + z20x2 + zolY + ... + zmnxmy n [2.1.13

f

The depth of the _"ing box, H(x,y) is measured from the midchord surface and the

thickness t(x,y) of each laminate is also defined by polynomial expressions x and y. The

expressions for the depth and thickness are:

H(x,y) = Hoo + Hlox + H2ox2 + Holy + ... + H,,,rrXmy" [2.1.2]

t(xd/) = tOO+ tlo.r + t20x2 + tOlY + ... + tmrrr_Y n [2.1.3] 1

m

In the present formulation, the depth of the wing box and thickness of the skins is as-
!

sumed to be constant throughout. The coefficients of equations (2.1.2) and (2.1.3) are: _.

H00=,.100 meter, t00**.002 meters

H_,, - 0.0 t,nn= 0.0 m = 1..... 5 n = 1,...,5

The wing box used for this presentation is shown in Figure 3. The box section chordlme i

is straight, therefore Z, (x,y) is zero for this presentation.

)

Structural Model .7 i
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Orthotropic Layers

h
Mid-camber

Surface

Zc

Spu Caps

Figure 2 Possible Wing Box Geometry
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2.2 Displacement Function

The Rayleigh-Ritz formulation assumes a deflection shape for the wing structure. This

deflection shape is a linear combination of n assummed displacement functions. The as-

sumed displacement functions are specitied as products of polynomial x-direction and

y-direction global coordinates. The deflection equation can be written as:

N M

a=0 m=2

where N is restricted to five terms and M is restricted to six terms in order to prevent

numerical difficulties in the manipulation of the matrices. W(x ,y) is the transverse de-

election of the reference line, and C,,,,,the set of unknown coefficients.

The deflection equation can also be written as:

_p

W(x ,y)= Ev_. (x ,¥) q [2.2.2]
i--I

where >,,( x, y) is the nondimensional displacement function and np is N times M. All

the assumed displacement functions satisfy the geometric boundary conditions for a

cantilever plate. The constants _ and y_ are defined in magnitude as the root chord

and span respectively. The d;-splacemcnt functions are nondimensional quantities in or-

der to prevent numerics, difficulties in manipulation of the matrices.
?

:¢
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2.3 Energy Expressions

The strain energy U for a symmetric anisotropic laminate is given as:

! iV_x 2D|2W:xW_,yU -- T (DII + + D:2 tV_y

+ 4Dl6WxyWxx + 4D26W,xyWvy + 4D66W2y }dA [2,3.1] ,.

I

where a comma denotes partial differentiation and Dq are the bending stiffness terms.

The kinetic energy T for the plate is:

T= l/2f f mW:dA [2.3.2]

where m is the distributed mass per unit area /,Vis the transverse velocity at x and y, and

A is the area of the plate. [

The Ritz soiution procedure is used to determine the numerical values of the set of un-

known coefficients, C,'s. To use the Ritz solution procedure, and to integrate these

equations the global x and y were transformed into a local system. This was achieved

by the following transformation.

x =,e, a',_ + (f- e)rl + (c - a')q_ [2.3.3]

y = g' + Bq [2.3,4]

$tructuruiModel 12
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! _4im-.,_ _ _ ._ ................. _" .........................................................................

q

The coefficients a', B, c, e,f, g' are dimensions of the local coordinate system as shown ' '

inFigurel[

J
'-_ The Ritz solution procedure is based upon the second variational priniciple. The second

variational that the total of the be written in
priniciple states energy structure can terms

}_ of any kinematically admissible function. If the total energy, E_), in terms of the

r; kinematically admissible function ._, is stationary at ._ =y with ECv)= O, then the func-

tion represents the real modes of the structure. If the function represents the real modes

of the structure then it can be used as a valid approximation to the exact solution. The

total energy of the structure can be written as: 1

E * U- T [2.3.5]
I

The extremum principle states that the energy is stationary with respect tO C0 i.e.
0E

_---_,= 0 . This produces a system ofn simultaneous equations. In matrix form then the

i equations are expressed as:
[[K] - _oz[.;/'j]{C) =,{0} [2.3.6]

where [K] and [M] are the stiffness and mass matrices resulting from the partial differ-

entiation of the potential and kinetic energies, recpectively, with respect to the general-

ized coordinates.

tt
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3.0 Aerodynamic Model
iiiii ii i I ii [

3.]. ,,4erodvna!nic Forces

This chapter presents the fo,,-muladon of the aerodynamic coemcient matrix. An

incompressible, 2-dimensional, unsteady strip theory, was used to calculate the aero-

dynamic coet_'_cients. This method was first developed by Barr,,by, et. al., [201 and was

modiFted by Yates [16] to include the effects of ftrute span. Lift and moment forces are

defined atong the midchord and acting upon sections perpendicular to this midchord line

(called the reference lane hereafter).

The flow field is represented by a uniform stream (non-cL-culatory component) super-

posed by the disturbance-velocity distribution (circulatory component) which will model

the effect of the posiuon and motion of the wing. It is modeled such that the condition

of tangential flow at the wing surface is met.

The positionofeach pointof thesegmenttakenperpendiculartot;_ereferencelineis:

Aero4yn,tmi¢ Model 14
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Z=h+x'O [3 1.1]

Where h is the deflection of the midchord, positive up, 0 is the rotation of a section

measured perpendicular to the midchord positive leading edge down, and x' is the per-

pendicular distance from the reference line, measured positive back.

The lift and moment forces are written in terms of a circulatory and non-circulator2,'

components. As taken from Yates" modified strip analysis [3], the lift force (positive up)

per unit length of the wing, is given as: 1

L = - npb2[,_"+ V,,0 + _"natan A - ba{O+ V,,+tan A)],,.c

- CCI,._pV,,bC(;_,,)Qa]_ [3.1.2]

where subscript nc indicates the noncirculatory component and c indicates the

circulatory component. The air density is p,/5 is the halfchord, V. is the air speed meas-

ured perpendicular to the rmdchord. Q...,,is the section lift coeffi_.ient which is constant i

along the span, A is the midchord sweep angle, and a is the off-set of the reference line

from the midchord line, assumed to be zero in this presentation. The local bending slope t

of the reference axis is represented by o and the local rate of change of twist is repres-

ente,d by r. C(k,) is Yheoderson's circulation function. The reduced frequency, k,, is a

r:._easureof the amount of cixculatzon in the flow field and is used in the circulation

function and _sgiven as [10]:

Vt'

C(kn) :,, 1- 0.165 0.335 ['3.1.3] I0.O455 O,3 .
l kn i 1 - _tk,1

Aerodynamic_,l_el 15
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Similarly, the expression for the moment M, per unit length about the midchord (posi-

tive leading edge down) is :

4 !
M = --npb [( _- + a2)(0 + [1_i"tan A) + r_pb2Vn(/_+ V,,a tan A) + npb3a(/z + Vn6 tan A)

+ np V2b2(O - ab. tan A)],,c

[ -2_p Vnb'[' TI _ (a - acn)C(k)_2_ ]Qa]c [3.1.4]

where a,. is the distance to the aerodynamic center from the reference line, and Qdis the

downwash distribution defined by: !_,

Q,t = 14+ VnO + Vno tan A + b( CI_"" - a)(0 -- Vnr tan A) [3.1.5] ,_
2--"7"-_+ ac" 't

I

i

The airfoil geometry.'with tTpical dimensions is shown in Figure 4. !
4

t
!

' i
!

'i

t
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The lift and moment forces can. be reduced to the following expressions assuming the _,

i_ wing is undergoing infinitesimal harmonic oscillations about its steady-state position ,

i_ [2ol.

,_ L _ - _rpb3oJ2(Bchh + BcoO) [3.1.5]

M = - rtob4oj2(Bahh + Bao0 ) [3.1.6]

The coefficients B,p,,B,e, B_,,, and B,# are defined as:

1 ia

Bch=_ Ach-_ h Ach tanA [3.1.7]

"F

,3c0 = Aca + ._- bAc.c tan A [3.1.8]

! ia
B,,h = _ Aa* - "7"T Aah tan A [3.1.9]^nsi

T

Bao = Aaa + _ bAa,_tan A [3.1.10]

and;

2iC(kn) Cl,,n
Ach =- I + [3.1.11]

:: kn2r_

b
i 2_c(k,)G,_, 2C(k,)G,_,

Ac_ = a + _ + kn2= (I - 2a) + , [3.1.12]k_2n

' ia 2C(kn)Cl_.n

; , Ac'_ = k'-_+ k_2n ( - acn - a) [3.1.13]

F
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'i 2iC(k,) G,, nAah= a - ' ( - + a) [3.1.141
:i k_t2r_ ac'_
;f

1 2 i 1

=-T-,, +CT-a)

2C(kn)Cla.n 2iC(kn)Ct_sub'n 2

k22rc (acn - a) - kn2n (acn - a2) [3.1.15]

i 3 i 2

A,,,=- k--_-E-T+2k---_.-(,,,-,,2)AjI D.l._6]

The bending deflection, h, and the torsional deflection,0, are defined along the reference

line -- the midchord.

Special attention must be made when expressing the quantities which relate the aero-

dynamic and structural models. The aerodynamic forces and displacements are derived

in terms of sections perpendicular to the reference line. The displacement functions (see

Chapter 2) and their derivatives define rotations parellel to the free stream flow. In order

to be consistent in the formulation, y,.,, y,,,,, and Y2..n,must be transformed to define

0, r, and a in the plane perpendicular to the reference line. These transformations are

asfollows:

np

o(._,.7)= _ G(_,,:(.7,._)cosA - y;,(_",.7)sinA) D.I.17"j
i=,,I

np

•r(._,.7)=,2 C_0,i.x(_,._)sinh + )_i_(x,.7)_;osA) [3.I.18]
isl

Acrodynlmic Model 19
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np

_,(; ,.7)= _G(y,,_(_",.7)cosAsinA
:=1

+ y,.xy(X",])( cos2A - sin2A) -/,o,y(; ,._) cos A sin A) [3.1.19]

Here the superscripts- represent the fact that x, y are not any arbitrary, values of.r and

.v, but ._, F are the coordinates of the reference line in x andy. Futhermore:

=F tan A [3.1.20]

Therefore h, 0, r, and o are functions of 5 only, where 37(= cos A ) is the distance of

the point x ,;5 from the origin along the reference line. For simplicity, ._, O, _, and o can

be written as:

np

hCF)= _-[C, 7(.'7) [3.1.21]

np

0_,")-- '_G Y,,_) [3.1.22]
c=|

np

o_') = z_.C__,;0') [3.1.23]
t=l

I

Aerodynlmic 31odel 20 __i.
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The lift and moment forces can then be written in terms of the displacement functions

7,(f) and the unknown coefficients, C,. Based upon equations 3.1.5, 3.1.6, and

3.1.17-3.1.24,the lift and moment can be written as:

np np

l i AEL,.;(;) C_}AchL = - rtpb3oo 2 { T E 7re(f) Cm - _ tan
m= 1 kn m= 1

np np _.

+Ac,_ _. _¢;)c,,+0At,tanA_ >=,,._;Ij)C_ [3.1.25J
m=l m=l 1

np np

'E EM = - npb4w 2 ( ==_ 7m(), C.. - k-'_tan A 7,,.;(.7) C_}.4ah
mini m=I

np np

+.4=,ETrn,_Cv-')Cn_+bAa, tanAET_._T(_7) Cm [3.1.26"]
m=l m=l

Having obtained the lift and moment forces, in terms of the displacement function and

unknown coefficients, attention must be focused on the principle of virtual work since 1

these forces are non-conservative. At this point forward, 7_") will be represented as 7 for

ease in derivations. '.

Aerodynsmi¢Model 21 Z !i .
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3.2 Virtual IVork

The lift and moment forces are non-ccnservative forces, therefore the principle of virtual

work must be employed. The definition of virtual work gives:

where 6£ and "_0 arc the virtual di_,p!accments and Q_ are the _eneralized forces. The

virtual displacements are definedas:

jh-- _,oc) [3.2.2]
7=1

rr.t:t

60 = ZTj, zdCj [3.2.3]
./=t

lhe virtual _ork can be expressed in terms of generalized forces and displacements as:

,l#

,5W._ = 2Q , 6q [3.2.4]

This can be written as:

Aerod)_nitmic Model 22
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"11

np np

j--I 0 _ . _ tan A('7,,._ 7j)C,.JAchi=1

+ (7i,_ "x)Ce4c, + b tana(Ti,_ ;_j)CiAc. d_yaCj

np

g Z i- npb4co 2 [/(7 ,. $/._)Ci-"_-n tanA(7i, _ 7/.z) C_].,lah

i=l !

+ 7,. Z r;j,r CiAa,, + b tan A(7i, iy _j. 7)C, Aa, ] ayaCj [3.2.5]

The generalized forces are defined as:

np

Qj = co2_-_A;,. C_ [3.2.6]
I----I

i
The aerodynamic matrix then becomes:

!

f

Aj, = - (7, ._j)- _ tan A(g,..; 7¢)]Ach

+ 7,, r 7jAc., + b tan a(Ti, i'_ 71)A_} dy

i

-;0 1 - itnob'l{[ T(7, Yi, i')-'_'_n'n tanA(7i,; "?j,r)]Aah

AerodynamicModel 23 _ t.
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1

+ Y,._ -Yl.zA,_ + b tan A(F,. H Fj. _-).'la,} _ [3.2.7]

The integral equations for the aerodynamic matrix are obtained by substituting the ex-

pressions for the aerodynamic coefficients, and the displacement functions _ 's into the

expression for the virtual work of the non-conservative forces. The integration is per-

formed numerically by a 15 point gaussian quadrature numerical integration scheme [23].

The roots of the Legendre Polynomial and the weight factors used in the numerical in-

tegration are given in Table 1.

AerodynamicModel 24
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Table 1: Abscissas and Weights in Gamsian Quadrature, n- 15

_" Abscissas Weights

| ,.

0.0_000000_000000 0.20257824192556 l

+/-0,201194093997435 O.198431485327111

+/-0.394151347077563 O. 186161000115562

+/-0.570972 !72608539 O.166269205816994

+/-0.724417731360170 O.139570677926 !54 :

+/-0.848206583410427 O.I07159220467172 I

+/-0.937273392400706 0.070366047488108

+/-0.987992518020485 0.0307532419961 !7 °

ill | i
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3.3 Flutter Analysis

The V-g method [2,.1]was used in computing the flutter speeds. This method introduces

a structural damping coefficient g into the equations of motion. Neutral stability (flutter)

is attained for a given velocity, when the damping of the structure goes to zero. As-

suming harmonic motion the equations of moticn become:

[[K'J(l + ig)- J[,%'O]{C} = co2[A] {C} [3.3.1]

In the absence of non-aerodynamic forces, the resulting generalized eigenvalue problem

can be written as:

['[/],i. - [B]]{Ci} = (0} [3.3.2]

B is a generalized complex matrix, 3. is the eigenvalue and {C} is the eigenvector. The

eigenvalue Ais defined as:

l+ig
= ----T- [3.3.3]

The generali_ed complex bar matrix bar [B] is defined as:

[B] -- [K]-l C,W'+ A ] [3.3.4]

The flutter speed perpendicular to the rradchord is defined as:

cob

r. --_--cosa [3.3,_3

Aerodynamic Mode! 26

1989002369-038



I

Where b is defined as the hail'chord perpendicular to the midchord referer.ce line. The

flutter frequency bar is _, and k, is the reduced frequency.
II
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4.0 Validation of Analysis Program

4.1 latroduct_o.a,i l,

This chapter gives comparisons between results found in literature and the present code.

The validation process is broken down into four sections. To validate the stiffness ma-

trix, thestaticdeflectio.sarechecked.The mass matrixisverifiedby comparingthe i
)

natural frequencies of vibration with isotropic as well as composite materials. Once sur- e
ficient verification of the structural model is complete, the static aerodynamic loads are T

checked for divergence of s'wept and unswept wings. The dynamic aerodynamic matrix

is veri£ed by comparing the flutter frequencies and speeds with results found by Castel

and Kapania [21] who developed a simple element for the aeroelastic analysis of lami-

nated wings. Their formulation allows for unsymmetric laminations, arbitrary geometry

includingchordandthicknesstaper,andmultiplesweepangles.

Validation of Analyfim Pr_rm 28
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#

The comparisons made in this presentation are for a wing consisting of top and bottom

flat laminated skins rigidly connected as shosrn in Figure 3. For all isotropic compar-

isons, the material properties of the rectangular box beam were taken to be Aluminium:

Ell = E22=,6.8948 x 1010 5'-"T Vl2- 0.30
P'n

The material properties of the material used in the laminated wing are:

Ell =, 6.9 x 101° N E,-, = 5.0 x 10l° '\'-'T' -- "-T vx_= 02S
m m

Gi2 = 1.5x 10l° 3___'2 Prnat=' 2.71 x 103 k,¢

m rrt 3

It should be noted that the material properties were arbitrarily chosen.

4.2 Static Deflections i

The static deflections are compared with Beer and Johnston [22I, and Castel and

Kapama [21]. For tip loading of a uniform cantilever beam, Beer and Johnston [22] give

the tip defiectton to be:

pl 3
Z=- 3E-"'T (.positive up) [4.2.1]

Comparisons with the results obtained using the EPFAC (Equivalent Plate Flutter

Analysis Code) are given in Table 2, for different aspect ratios, AR.

Validatinn of Antlysit Program 29
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Next, the tip def'.ection under the same loading condition was tested against results of

Castel and Kapania [22] for the wing in Figure 3. In this formulation, Castel and

Kapania used four finite elements to model the structure. Each beam element has

twenty-four degrees of freedom, twelve at each end. Results for zero sweep and variation

in fiber angle are given in Figure 5. Excellent agreement between the finite element code

and EPFAC exsi:ts; for the entire range of values of the fiber angle.

Figure 6 gives a clear comparison between the two different models. EPFAC is termed

a skewed wing while the model of reference 21 is a rotated wing. The differences in de-

flections obtained using the different modeling o, the wing structure can be accounted

for as follows. The rotated wing's boundary conditions are such that the analysis pro-
)

cedure assumes an effective root and tip perpendicular to the reference line, regardless

of sweep angle. As a result, the static deflections are independent of the sweep. The

skewed wing assumes the root and tip parallel to the flow. As the wing is swept forward

or backward, the torsional and bending stiffnesses become coupled. Static deflection

comparisons for different sweep angles of the composite material are given in Figure 7. ,.
i

._

f

4.3 Free Vibration Analysis i

For the wing under consideration, the natural frequencies obtained from the present

code EPFAC was compared with those obtained using the expressions for a uniform

i
Bernoulli-Euler Cantilever Beam [25]. The comparisons of these values are shown in

Table 3. The results show excellent agreement for different aspect ratios.

h Validstionof AnalysisProgram 30 'i
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1

• , EPFAC was compared with ReE [21], for an unswept wing having different ply angles.

_1 The results are i:lotted in Figure 8. The natural frequencies of forward and aR swept
-i

wings were also tested. The results are shown in Figure 9. The differences between the

I_ two sets of results at larger sweep angles are due to the differences in modeling of the

I" boundary conditions, in the two studies as discussed previously in section 4.2.

Validation or Analysis Program 31
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Table 2 • Comparisons of Tip Deflections (meters) for Different Aspect Ratios

! AR EPFAC Eqn. 4.2.1 %dilT

5 - 0.04748 -0.0d6d6 2.14

I 10 -0.18995 -0.18587 2.15
I

20 -0.75968 -0,7_3a2 2.14

30 -1.71032 -1.67408 2,12

Validation o£ Anziysis Pro_rzm 32
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Table 3: Comparison of Natural Frequencies (rad/sec) For Different Aspect Ratios

!i. A R M ode EPFAC Ret_24

5 1 9.015 9.040

2 56.349 56.674

3 157.832 158.732

10 1 4.490 4.522

2 28.085 28.334

3 78.627 79.356

20 1 2.242 2.261

2 14.027 !4.169
!

3 39.250 39.682

Validation of An_d)'sisProgrsm 33

_" .... ,, , . ...... _a_ ....................... ,2.

1989002369-045



Figure5 Tip DeflectionComparisonof"Box Beam at Zero Sweep
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4.4 Divergence attd Flutter

Having gained confidence in the structural model, the results for aeroelastic response of

swept and unswept wings were compared with the results from two different codes: (1) a

code written by Barthelemy and Bergen [17], and (ii) a code written by Castel and

Kapania [21]. Barthelemy and Bergen used Weissinger's L-Method to obtain the static

aerodynamic loading matrix.

In Weissinger's L-met. od, the flow around the wing is modeled by a lifting line of

vortices bound at the wing quarter-chord line. A no-pentration boundary condition is

specified at na control stations along the win,, The placement of the control points de- !

terrmnes the spanwise distribution of' , modification to the position of the down.

wash distribution was employed to account for the slope of the C_ vs a curve less than

2n.

The wing dimensions used for companson vcith the present method are:

Sffi20.0m 2 AR=I0.0 tp-- 1.0
I

1

where tp is the taper ratio of the half wing. The results are shown in Figure 10. An

excellent agreement is observed between the two sets of results.

Castel and Kapania [21] used Yates' modified strip method [3] to obtain both the static
i

and dynarruc aerodynamic loadings for swept and unswept composite wings. For dif- i

ferent values of sweep the fiber orientation was varied and the results for the divergence j

and flutter speeds were obtained with EPFAC. Figures 11-15, show the comparison

Validationof Anal),sisProgram 39
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between the results obtained using the EPFAC code and that of Castel and Kapania for

divergence and flutter speeds for different va!aes of sweep and fiber orientation. The

differences at large sweep angles are due to the different models used in the two studies.

As discussed previously in the section on deflection in this chapter, the model used in

Reference [21] is a rotated model, compared to a skewed model used in EPFAC

Validation of Anldym Ptollrtm 40 i

m ..!!

1989002369-052



LEGENO R[F[R£NC[ [7

IQ ......... IEP_'AC

250
P

,,"N

\

v 200

ID
b.I

LI..] //,/

a.

(h 150
L

" 0
i z

i 0 100r I1:r

' >

_1_ .°.°'° ..o.o-

,50 _. . - | - . ,..... | '

-45 -30 - 15 0

, SWEEP ANGLE ( DEG )

Figure !0 Variationof DivergenceSpeedw_thSweepAngle

VaJid_m of ,_._ly-;- ProF_ 41

1989002369-053



f q

_- ,v . R£F. 21
i.[G[NO _) I VI_RGI[NC[

fLUTTER, f_[r.21
.e.--e- .-,, Ir LUT TI[R

150

(/)
\

120 ....----..

.. _/ ]W
13.. 90 .

\ //

60
J

0
,I

- i

0
0 .... ,3'06'0 9"0- 12 0 ' 1,5 0- * -18 0

FIBER ANGLE

FlllurlII Diverlenceand FlutterSpeedsof a 45 "Swept£orwardBox Beam

Vsli_, et Asslym hqrm

)'

1989002369-054



' 1

!
e

LEGEND 0_ _v R£F,2te c c o,_[_c[.¢[

_-4--.,,. FLUTT[R REF 2]
_'-._ _ FLUTT£R"

150

(/)
\

120 =b

d3
Ld

n 9o X j-_-"---_-. .,,,
<

6O
J

<
O '

- 2k- 50 i

rr '
t

_ ¢ _

0
0 3'0 60 90 120 150 180

F" I BER ANGLE

t

i
Figure 12Divergenceand Flutter Speedsor a 30 ' Sweptl'orwardBox Beam

YaJ_sfi_ o4' AnaJysisPrq,lrsm 43 ._i

_ ..... " 1989002369-055



Figure 13 Divergence and Rutter Speeds of a Unswept Box Beam
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5.0 Sensitivity Analysis
| nnl lal In

5.1 httroduction
f

This chapter presents the calculation for the sensitivity of the flutter speed, flutter fre-

quency, and reduced frequency to geometric shape parameters namely: (i) aspect ratio,

(ii) surface area, (iii) taper ratio, and (iv) sweep angle. The sensitivity calculaticns require

the sensitivity of"the aerodynamic, mass and stiffness matrices with respect to various

shape parameters. A key objective of this study is to check the viability of calculating

the desired derivatives using an analytical approach. It was decided to analytically ob-

tain the sensitivitie_ of the aerodynamic matrix. The analytical derivatives eliminate the

uncertainty in the choice of step size which if too large can can lead to truncation errors

and hr too small can lead to ill-conditioning.

The derivation of the analytic derivative of the aerodynamic matrix, is given in this

chapter. To validate the expressions for the eigenvalue derivatives, these derivatives are

calculated using three different methods. The first method is purely a numerical ap-

Sensitivity Ak_alysi_ 47 _
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proach that uses a finite difference approximation to find the eigenvalue derivatives. The ',

secona method is a semi-analytic approach, because the derivatives of the aerodynamic

matrix are found using finite difference approximations, and then using the expression

_, for tile derivative of the eigenvalue as given by Munhy and Haftka [19]. The third "an-

| alytic'" method uses an analytically derived derivative of the aerodynamic matrix, along

with the eigenvalue derivative expression given by Murthy and Haftka ['9].

5.2 Eigenvahte Derivatives and Solution Procedures

In the first method of calculating the derivatives, the flutter problem is solved twice and

the derivatives of the eigenvalues are approximated using a forward finite difference

scheme.

The second and third methods use the expression for the eigenvalue derivative as given

by Murthy and Haftka [191.The expression is derived using the main and the adjoint

problem. The main eigenvalue problem is:

[[r]_- [B]](eA= (o} [5.2.1]

11 where e, is the right hand eigenvector, and [B] is defined in equation 3.3.4. Similiarly the

adjoint problem is:

: {et}'CC/'J2- CB]] = {0}' [5.2.2]

Sensitivity Analysis 48
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I,

where e_is the left hand eigenvector. The eigenvalues in both cases are the same. Taking
,i

the derivative of equation 5.2.1 with respect to a shape parameter 9, yields: '.,

[[/] dPs 8Ps ](er} + [[8)- - [BIll 8p---7 } = 0 [5.2.3]

Multiplying the above equation by left eigenvector gives:

d). 8[B] _e...._.L_
{et)'[[0 Op, Op, ] (e,)+ {ez)t [[/'ja - [B-l]( _p_) = 0 [5.2.4]

Equation 5.2.2 reduces this to:

(el)t[[_ OPS ¢_Ps ] {e,}= 0 [5.2.5] _i,i

For the i '_ eigenvalue, the eigenvalue derivative is extgressed as:

!

a,_, {e/}'a[B3{,,_}OPs

Ops it i [5.2.6]
{eli{_,) !i

[

! Recallhag equation 3.3.3, the eigenvalue derivative in terms of flutter frequency, damp-

hag, and there derivatives is written as:
[

2 8_..__ 8g 2
OPt

"_ps = 3 + 4 i [5.2.7]

. Sensitivity Analysis 49
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To obtain the derivative of the generalized complex matrix [B], the derivatives of the '_

aerodynamic matrix [A]; of the inverse of the stiffness matrix [K] -_, and of the mass

matrix [M] are needed.

alp, Op, [ ['_'q+ [A]] + [.'q-_[ _[._r]_= _p_ + @. ] [5.2.S]

The derivatives of the mass matrix, and the inverse of the stiffness matrix are obtained

using the for_'ard finite difference method. A study was first conducted to obtain an

appropriate step size for the finite difference calculations. The results of this study are t

shown in Tab!e .4. These step sizes indicate that the calculated derivatives are stable as

indicated in Table 4. ,:

The derivatives of the aerodynamic matrix [A] with respect to a geometric shape pa-

rameter are obtained using two different methods: (i) finite difference method; and (ii)

analytic method. The calculation of the sensitivity of the aerodynamic matrix [A] is made

!

difficult by the fact that this matrix depends upon shape parameters p, and also on the 14
,I

reduced frequency k,. The reduced frequency is not really an independent variable, as its

value for a new value of/),( =_t,_ + Ap,) should be such that the imaginary part of the

i eigenvalue corresponding to the perturbed configuration should be zero.

In the finite difference method, the sensitivity of the aerodynamic matrLx [A] is obtained
)-

as follows:
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,i
To obtain the value of Ak,, an lterative procedure, as described in Figure 16, is used.

As a first step, Ak, is put equal to zero, and the sensitivity of the eigenvalue is obtained.

Obviously, the imaginary part of the new eigenvalue thus obtained will not be zero. This

fact is used to obtain the value of Ak, as explained in the foilowing.

]'he change in the damping coefficient g, a function of both the shape parameters and

reduced frequency, can be written as:

c_g
Og. dp_ + d% ES.2.t03

At flutter speed:
f

g--0 , dg--O

Therefore

Og

dkn Opx

dp-"-_"= -" Og [5.211]

Okn

Og

Note that 0k-'-'_"was already obtained during the calculations of the flutter speed. The

values of reduced frequency are varied in the intial problem to compute the value at the

8g

point the damping coefficient goes to zero. Therefore, -_, is easily computed by a for-
Og

ward finite difference scheme. The value of-_-p, is obtained from the imaginary part of

the sensitivity of the eigenvalue obtained in the first step. This is computed directly from

the eigenvalue derivative. Recalling equation 5.2.7:
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Oil)
2 -z--- g

Og 0). ) oj2 c'Ps
Ops - imag( + [5.2.12]' OPs

where co is obtained from the orginal flutter problem and;

&o real( _ ) co

dPs - 2 [5.2.13]

c_g
If--_-o is not within a tolerance of 10-6, the aerodynamic matrix [A] is r,':alculated at a

"FJ I
new value of the reduced frequency while also keeping the same perturbation in the

dk,,.
shape paramete:. Once _ls known, an approximation to the value of k,, correspond-#,

ing to flutter speed for a new value of p,, is obtained using a Taylor's series expansion:

dk.

k,7"'=ota + 'ps [s.zl4]

This process is repeated until the tolerance is met.

In the "analytical" method, the sensitivity of the generalized comr.,ex matrix [B] is ob- T

tamed in a sirmliar fashion except the sensitivity of the aerodynamic matrix [A] is com-

puted analytically. This is expressed as follows: t

O[A] O[A] dk.

Both "":---op,and _ are derived in section 5.4. The value of_o"p' dk,iscomputed from
the eigenvalue derivative, as explained above. In the first iteration,-,-- is assumed to

ape

be zero. The aerodynamic matrix derivative is computed and combined with the deriva-

i
t
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aEz] ,,
tires of the mass IM], inverse stiffness matrices [K] -1 to form ,'30, The eigenvalue

dk,,

derivative is then computed. The value of-_p, is calculated as described above. Figure
H

17 shuws a detailed flow chart of the analytic method.

The derivative of the flutter speed is:

6co b Ob Ok,_
aVf [k,_[ Op, +oo-v--]-oObcp__]

- [5.2.163
OPs k2

]'he flutter speed at the new configuration is then computed using a truncated taylor y

series. As before:

To calculate the analytic derivative of the aerodynamic matrix, the geometric parameters

must first be defined.

t
!

5.3 Geometric Parameters !

The Aerodynamic matrix is composed of geometric parameters which are a function of

surface area, aspect ratio, taper ratio and sweep angle. These parameters are the span,

root chord, tip chord, halfchord, the global x and y coordinates, the displacement func- ,,

tions, and their derivatives with respect to global x and y coordinates. These are ex- i

pressed as:

Sensitivity Analysis 5.1
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B= 4"h'Tg" E5.3.13

(l + tp),/_-_s [5.3.2]

2Sip

! C_= (1 -t-tp),./,.-1R"--_ [5.3.3]

(,7(,3+ t)
cra(O : C, + ((St - C,) 2 i = 1,.... 15 [5.3...'1]

c,
x(0=--_+y(0tanA i=l .... ,15 [5.3.5]

.v{0= B_(0+ B
2 i= 1,...,15 [5.3.6]

crdft)
_', b(O=---_-cosA i= 1,...,15 [5.3.7]

Where b is the half chord measured perpendicular to the reference line, A R is the aspect

ratio, S is the surface area, C, is the root chord, C, is the tip chord, crd(i) is the chord

length at station i, and tp is the taper ratio.

5.4 Analytic Derivatives

For general purposes, p, will represent the shape parameters, where s = 1 is the surface

area, s = 2 is the aspect ratio, s = 3 is the taper ratio, and s = 4 is the sweep angle. The

Sensiti,,ity Anal)sis 34
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Aerodynarmc matAx, given in equation 3.2.7, must be di,Terentiated with respect to the

shape parameters and the reduced Frequency. In order to avoid the use of Lebnitz's Rule,

and facilitating numerical integration using Gauss integration, the intcrgrals must be

changed over to local coordinates. Equation 3.2.7 is written as:

L l iAii=- rtpb3o_ 2 [[--_-(_, _fl--'_n-n tanA(7,,_7 :]l)]Ac,_1

B
+ _,.; 7/lc,. + b tan A(7i._ 7j).4c_] 2 cos A d,7

B
+ :},._ $j.ZAa,. + b tan A(_,.F -_ja)Aa,] 2 cos A dr/

B
where d_ is replaced by 2 cos A dq.

The derivative of the aerodynamic matrix with respect to a general shape parameter,
B

representing B'- is:cos A '

31b2 Ob- - ib_ 07,._ ib3 ?._!

[ kn Ops 7,.;>) tan A . k. dps 7;tanA+"_n 7"; Op'"_tanA

+ ibJ - - dA ib3 7i.fi) tanA _kn ] Ach
kn cos2A Yt._'_)opt k2 °Ps

Sen,dtivit_ Anal_,_i$ SS
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J

1

+ [[b27, 7/- _ tan AT, 7 7.i]Ach+ b37,.._ :._,Act
k n '

+ (b4 tan A Yi.iT Y))Ac,+ [b_'ii _i. ib4x kn tan A7,.:7 _,,.Z] Aah

b _ ?.B'
+ b '/i.7 _j.£Aa.. + tan A_,.,_ _j._Aa, ] _ ]d,l

The derivatives of the displacement function with respect to a general shape parameter

p, are given as follows:

0 0 Ox 0 a;'
+ [5.4.3]_p_p_= ax ap, ay ap,

The global coordinates x and y are given in terms of the local coordinates znd the ge-

ometric shape parameters in equations 5.3.5 and 5.3.6. The derivatives of x and y with

respect to various geometric shape parameters are as follows:

Oy S(_+ 1)
= [5.4.4] ,!

OAR 4(._.AR S )

dy AR(q + 1)

aS 4(4AR S )

_v
=0.0 [5.4.6]

Otp

--:- =o.0 [5.4.7]0A
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i,i

Ox S2 a>, _
OAR - 3 + _ tan A [5.4.8] ,

2(1 + tp)AR ST

d"'_"= 2(1+ tp)_ + tan A [5.4.9]

ax Sv AF'J'-RRS
- [5.4.io] :

ate [(I + tp)]_ i

ax _R S (. + l) /
[5.4.1 l]

0A 2 cos'A

The derivatives of the ha!fchord vdth respect to the shape parameters are:

ab (1 + (tp - 1))7+ tp) cos A
--- = [5.4.12]
as 4(1+ t:),/-_ s

Ob S"(I + (tp -l)rt + tp) cos A
aAR - 3 [5.4.13]

4(1 + tp)(S A R)T

Ob S _7 cos A
-- = [5.4.14]
atp (l + ep)24AR S

Ob S(I + (tp - l)rr + tp) sin A

OA 2 ( 1 + ty),JS A R [5.4.15]

The aerodynamic coefficieats,/._, A_,, A,.,, Aa, A_ and A_, are functions of the reduced

frequency. The reduced frequency changes as the shape parameters change therefore

these terms are functions of the shape parameters and must be included in the formu-

: lation. They are definedas:

SensitivityAnalysis $8
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a a dkn
- [5.';, 16]aps ak,, dps

dC(k n)

axch iC/= k. dkn C(kn)

Okn - (T) 2 [5.4.17]kn

dC(k,,)
;c_, k. dk-------_-c(k.)_ I

a,4.: i +(T) _ (T-a)Ok,, .k_ kn

dC(k,,)

CI= kn dkn 2C(k'O
(--_-)

k"3 [5.4.15] ,

dC(k.)
k,, C(k_)aAc, ia dkn Cla

: - -TT+ : (_ ( - ac.- _)) [5.4.19]kn kn

aXah kn dk n C(k,) iC/=
= - ( )( T )( - acn + a) [5.4.20] :

ak. k_ !

de(k,,)
k,, 2C(k_)

OAa,. i I dkn C/:
= -"T (T - a)+( 3 )-'7-( - a_ + a) '

Okn kn k n

dC( k,O

kn dkn C(kn) iCta 2
+ ( ., )( --if'" )( -acn + :') [5.4.21]
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q

de(k,,)
C(k,,)

OAa, i 2i 2 dkn Ct_ I Aa_.5.4.22 ]

The derivative of Theodorsen's circulation function, as given in equation (3.1.3), is:

oovsovs, . oo5,
dC(k. k.2

dk n .0455i -2 + .3i -2 [5.4.23]
[1 k. J El- - ]

The "analytic" derivative of the eigenvalue with respect to various parameters, namely !

the surface area S, the aspect ratio AR, the taper ratio tp and sweep were compared with

those obtained using the two previously described methods, namely: (i) the purely finite f

difference method and (ii) a semi-analytic approach in which the desired derivatives were

obtained using a forward finite difference scheme. The results are shown in Table 5. An

excellent agreement exists between the various sets of results. However, the values of the

derivative of the eigenvalue, with respect to sweep, see fourth row of Table 4, obtained

using the three methods appear to be different from each other. For example, the "ana- i

lyrically obtained " derivative ( case (iii)) is about 6.95 percent more than that obtained
!

using a purely f'mite difference approach (case (i)). Similiarly, the value of the same de- !

rivative obtained using a semi-analytic approach (case (ii)), is about 9.36 percent less

than that obtained using the analytic approach. The reasons for this descrepencies are

not entirely clear at this stage. However, Figure 28 shows that the analytic method gives

the best results.

Figures IS through 29 show the flutter speed, frequency, and reduced frequency analyt- I

ically based values versus the values which where reanalyzed at different configurations.

i SensitivityAnul.vsis 60 ,
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'I

These are called reanalysis values because the v.g method was used to solve for the

flutter speed at the perturbed value. These show excellent agreement over a range which

can be useful to the designer in the intial design phase.

However, close attention zhould be paid to any mode shifting. For instance, in smaller

aspect ratio configurations the flutter frequency predominant mede changes from the

third mode to the second mode. This evident in Figure 21, where the flutter frequency

drops for the lower values of the aspect ratio.

Sensitivity Analysis 61
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Table 4: Comparison of Finite Difference Step Sizes .'
AS

_ 1.0 18.93,1 a 50.785 a 60.748 a 0.9612 b 0.2149b 0.0808 b
.10 18.945 49.120 57.449 0.9193 0,1987 0.0730

II .01 c 18.950 48.930 57.100 0.9147 0.1970 0.0723
.001 19.00 48.200 56.100 0.9000 0.1935 0.0709

AAR

i !.0 0.0 8G.850 119.85 1.7345 0.4_12 0.1986
i .10 0.0 78.558 109.84 1.6370 0.4153 0.1613
? .01 c 0.0 7_.310 108,83 1.6268 0.4091 0,1579

.001 0.0 78.70 109.30 1.6350 0.4105 0.1583

A_p

.I0 0.0 123.63 122.64 2.1397 0.35,_3 0.1131

.01 0.0 1i8.03 117.10 2.0429 0.3,121 0. 1080
.001 c 0.0 117.50 ! 16.60 2.034 0.3406 0,1075

.0001 0.0 116.0 !!5.00 2.010 0.3370 0.1070 1

AA

1,0 61.993 53.302 108.49 .15123 .2566 .04798
.10 61,811 51.543 108.17 .15079 .2479 .04785
.01 c 61.765 51.394 108,12 .15075 .2471 .04784

.001 61.307 51.566 107.72 .15069 .2469 .04755

a) These columns represent the fimte difference derivatives of the stiffness matrix.

b) These columns represent the finite difference denvatives of the mass matrix.

c) Step size used for finite difference calculations

SensitivityAnnlysis 61
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Table 5: Comparison of Eigenvalue Derivatives w.r.t Four Parameters
• J J

case (i) case (ii) case (iii)
Finite Difference Semi-Analytlc Analytic

S 2.4151 E-5 2.4593 E-5 2.4571 E-5

AR 7.8769 E-6 8.1694 E-6 8.1562 E-6

TP 2.6719 E-4 2.6571 E-4 2.6330 E-4

SWEEP 2.8831 E-5 2.4199 E-5 2.6761 E-5
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Figure21Flutter FrequencTvsAspectRatio
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6.0 Conclusions and Su . estions for Future Work

I

A method for analyzing the dynamic aeroelastic behavior of a laminated wing has been

developed. The aerodynamic formulation was taken from Yates' moditied finite strip

method. This was combined with Giles' equilavent plate model which is capable of ana-

lyzing cranked wing box structures. Three different approaches were used to obtain the

sensitivity of the flutter speed, frequency, and reduced frequency. The first was a purley

numerical approach using finite difference method. The second used the analytic ex-

[

pressions for the derivative of the eigenvalue as originally derived by Lancaster [191, and

a finite difference method to the calculate the derivatives of the e _.rodynamic, mass and

stiffness matrices. The third method -',:,so used Lancaster's [19] expression for the
!

elgenva[ue derivative but the derivative of the aerodynamic matrix is computed analyt- _

ically.

It was shown that the eigenvalue derivatives for all three cases are in good agreement

with each other. Also the results for flutter speed and reduced frequency obtained using ,'

I
sensitivity based analysis, for a significant range of parameters, are found to be in good

agreement with those obtained using a complete reanalysis.

t
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I

There is ample room for additional work in the area of Aerodynamic sensitivity analysis.This work can be extended to include the analytical derivatives of the mass and stiffness

matrices. This will eleminate any uncertainties in choosing a finite difference step size

and be of great use to the present optimization codes.

An improved aerodynamic code could be added to include the effect of chordv.ise

bending of the box stn :ture. This can oe achieved b', using ,he aerodynamic co_:fticients

developed by Spielberg [26] to modify the r,'esent analysis.

The variation of the curvature of the flutter speed, flutter frequency , and reduced fre-

cluency could be predicted more acurately by a second order derivative. For a general

complex matrix, efticient calculations of these derivatives are pr_.sent by ,Mu,'thy and

Haftka [191.

The aerodynamic sensitivity calculations of a wing with mass stores is needed in the in-

dustry. The changing mass configurations of a wing with missiles and bombs is a typical

example for the need of such an analysis capability.

This work can be extended to include the sensitivities of" the flutter speed, flutter fre-

quency, and reduced frequency to a simultaneous change in several shape parameters.

For example, the sensitivity of flutter speed with the changes in sweep and aspect ratio

would be us,'ful. The structural code used in this analysis is extremely versatile and can
0

be extended with the present aerodynamic _'ormulation to analyze cranked wing boxes.

Conclusions and Suggestions for Futu;e Work "/9

)

.: - ,_. ..... • . ,ii i ii iiii ' ' " I HI I II .......

"1989002369-091



'L

i

7.0 References

1. Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroe!asticity, Addison-
Wesley Publishing Company, Inc., Reading, Mass. 1955.

2. Loring, S. J., "General Approach to the Flutter Problem", S..-I.E. Transactionz
, Vol. 49, Aug.,1941, pp.3,:15-356. '

3. Yates E. C.,"Calculation of Flutter Characteristics for Finite-Span Swept or
Unswept Wings at Subsonic and Supersonic Speeds by a Modified Strip Anal-
ysis", NACA RM L57110, March 18 1958 (Declassified Feb. 6, 1962)

4. Landsberger, B. J., and Dugundji, J.,"Experimental Aeroelastic Behavior of
Unswept and For,yard-Swept Cantilever Graphite/Epoxy Wings", Journal of

Aircraft, Vol.22, No.8, August 1985. i

5. Spielberg, I.N,, "The Two-D_nensional Incompressible Aerodynamic Coeffi-
cients for Oscillatory Changes in Airfoil Camber", Journal of the Aerona'aical e

Sciences, Vol.20, June 1953, pp.389-396, t

6. Strganac, T. W., and Mook D. T.,"A New Method to Predict Unsteady
Aeroelastic Behavior", AIAA 28th Structures. Structural Dynamics and ,t4ateri-
als Conference April 6-8 1987.

b 7. Waltlman, W., "A Fortran Pregram for "..he Determination of Unsteady
Airforces on General C_mbinations of Interfering Lifting Surfaces Oscillating

in Subsonic Flow", Structures Report 412 D.O.D. of Austra_a., January 1985.

8. Hawk, D. J., ano Bristow, D. R., 1984: "Development of MCAERO Wing De-
sign Panel Method With Interactive Graphics Module", NASA CR-3775. j

9. Brayton, R. K., and Spence, R.,Sensitivity and Optimization ,Elsevier, New
York, 1980.

Reference* 80 1 !

1989002369-092



10. Frank, P. M.,Introduction to Sensitivity Theory, Acndcmic Press, Orlando, Fl.,
1978.

11. Radanovic, L. (ed.),"Sensitivity Methods in Control Theory", Pergamon Press,
Oxford, England, 1966.

12. Tomovic, R.,"Sensitivity Analysis of Dynamic Ststems", Mcgraw-Hill Book
Co., New York, 1963.

13. Adelman, H. M., and ltaftka, R. T., "Sensitivty Anal_sis of D:scrcte Structural
Systems", AIAA Journal, Vol. 24, No.5, May 1986. pp.S23-831.

14. Rudisill, C. S., and Bhatia K. G.,"Optimization of Corr.?lex Structures to Sat-
isfy Flutter Requirements", AIAA Journal ,Vol.9, No.S, August 1971,
pp. 1486-1491.

15. Pedersen, P and Seyranian, A. P.,"Sensitivit) Analysts tbr l'rcblems of Dy-
namic Stability", International Journal of Solids and S,'ractures,Vol. 19, No.4,
1983, pp.315-335.

16. Yates, E. C., "Aerodynarruc Sensitivity from Subsonic, Sonic, arid Supersonic
Unsteady, Nonpla_ar Lifting Surface Theoz2,'" NASA TM-1t)0.5_!2, 1987.

17. Barthelemy, J-F. M., and Bergen, F. D., "Shape Sensitivity Analysis of Wing
Static Aeroelastic Charactem, ucs ,NASA TP-2808, Ma; 1988

18. Giles, G. L.,"Equivalent Plate Analysis of Aircraft _,Ving Box Structures with
General Planform GeometH", NASA TM 87697, March 1986

19. Murthy D. V., and Haftka, R. T., 'DerivatF, es of Eigenvalues and Eigenvectors
of a General Complex Mat/ix", Department of Aerospace and Ocean Engi,Teer-
ing. VPI&SU, June 1986

20. Bannby, J. G., Cunningham, H. J., aad Gamck, I. F.,"Study of Effects of
Sweep on the Flutter of Cantilever Wings", NACA T?; 2121, June 1950.

21. Castel, F., and Kapania, R., "A Beam Element for the Aeroe!a,;tic Aaalvsis of
Undamaged and Damaged Larmnated Structures", CC.$tS Report, July 1"988.

22. Beer, F. P., and Johnston, R. E., Mechamcs of .$L,:er;als, 1st ed., Vol. 1,
McGraw-Hill, New York, 1931, p.598.

23. Carnahan, B., Luther, H. A., and Wilkes, j. O., Appl, ed ,Vu'nerical Methods,
1st ed., Vol. 1, WL!ey, New York, 1969, p.103.

24. Fung, Y. C.,An Introduction to the Theory _f ,4eroefas:icity , D'Jve, °ubIications,
Inc., New York, 1945 pp.215-241. 1

25. Craig, R. R.,Struetural Dynam_csAotm Wiley arid Sons, New York, 1981, p.215.
1

References ."',._INAL-"' P_G.a- IS 81

OF POOR QUALITY

J

] 989002369-093



26. Deyoung, J., and Harper, C. W.," Theoretical Symmetric Span Loading Load-
ing at Subsonic Speeds for Wings Having Aribitrary Plan Form", NACA Re-
port No. 921, 194L

27. Dowell, E. H., et al., A Modern Course in Aeroelasticity, Sijthoff & Noordhoff,
Alphen ann den Rijn, The Netherlands, 1978, pp.72-100.

28. Goland, M.,"The Flutter of a Uniform Cantilever Wing", Journal of Applied
Mechanics, December 1945 pp. 197-208.

29. Haftka, R. T., and Yates, E. C.,"Repetitive Flutter Calculations in Structural
Design", Journal of Aircraft, Vol. 15, No.7, July 1976, pp.454-461.

30. Lottati, l .," Flutter and Divergence Aeroelastic Characteristics for Composite
Forward Swept Cantileverd Wing", AIAA paper, June 1985.

31. Meric, R. A.,"Shape Sensitivity Analysis of Dynamic Structures" , AIAA "
Journal, Vol.26, No.2, February 1988pp.206-212.

32. Rao, S. S.,"Rates of Change of Flutter Ma*:h Number and Flutter
Frequency", AL,!A Journal, Vol. 10, No.I 1, November 1972, I:p.1526-152S.

33. Rudisill, C. S., and Bhatia K. G.,"Second Derivatives of the Flutter Velocity
and the Optimization of Aircraft Structures", AIAA Journal, Vol.lO, No.12,
December 1972, pp. 1569-1572.

34. Seyranian, A. P.,"Sensitiv,ty Analysis and Optimization of Aeroelastic
Stability", International Journal of Solids and Structures, Vol 18, No.9, pp
791-807, 1982.

35. Srinivasan, R. S., and Babu, B. J. C.," Free Vibration And Flutter of Laminated
Quadrilateral Plates", Computers and Structures, Vol.27, No.2, November 1987

pp.303-312.
36. Theodorsen, T.,"General Theory of Aerodynamic Instability and the Mech-

anism of Flutter" NACA Report No.496, May 1934. r
t

t
|

References 82

1989002369-094



_I._=._'_ ...........................

iml , i ,, i

" _ Report Documentation Page

1, I:legort No. I 2. Government Accetllon No. .1. ReclDlent's C4141o_ No.

I_, NASACR-181725

4. Tit_e an0 Subtitle 5. Re;x)rt Date

' Shdpe Sensitivity Analysis of Flutter Response October 1988
'+." of a Laminated Wing 6. l=e_c.,m;_ Orglnizltw_ Code

7. Autr_ot(sJ 3. #erformmg OrglnizatK.vt RIlPO_ No.

t
Fred D. Bergen and Rakesh K. Kapania 10. Work U_t No.

506-43-41-01
9. Performing OrglniZltion Name and Address

11. Contr3¢[ or Gtlnt No.

Virginia Polytechnic institute & State University
Department of Aerospace and Ocean Engineering NASI-18471 - Task 5
Blacksburg, VA 24061 13.Ty_,of _,p_ an__,,,_ Co.._._

12. Spom_w_nng Agency _Jsm'_l an(l Addtesz Contractor Report

National Aeronautics and Space Administration _4 S_o._,_A,..,':yC_WD
Langley Research Center
Hampton, VA 23665-5225

_'_",5. Supplementary NoI_I

Langley Technical Monitor: J-F M. Barthelemy

16. Abstract

method is presented for" calculating the shape sensitivit} of a wing aeroelastic
response with respect to changes in geometric shape. Yates' modified strip
method is used in conjunction with Giles' equivalent plate analysis to predict
the flutter speed, frequency, and reduced frequency of the wing. Three methods
are used tn calculate the sensitivity of the eigenvalue. The first method is
purely _ finite difference calculation of the eigenvalue derivative directly
from the solution of the flutter problem corresponding to the two different values

, of the shape parameters. The second method uses an analytic expression for the
_,itenvalue sensitivities of a general complex matrix, where the derivatives of
the aerodynamic, mass, and stiffness matrices are computed using a finite
difference approximation. The third method also uses an analytic expression for
the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically
All three methods are round to be in good agreement with each other. The
sensitivities of the eiqenvalues were used to pr.'dict flutter speed, frequency,
and reduced frequency. These approximations were found to be in goed agreement
with those obtained using a complete reanalysis. However, :t is recom_lended that
hi_her order terms be used in the _a]_gla' ions.i{l order to assure greater acr.r'_ry.

17. Key WorcJs (Su_sZe_ by Autr_or(ld 18. _,_,,,buI=om Statement

Sensitivity analysis Unclassified - Unlimited
Flutter

Composites Subject Category 05,34,39

o, = '°'"' I "°°' I=
i

Unclassified Unclassified 1 g5 _ A05
I I _

NASA FORM I(12_ OCl _I_

, ...... _/_ _,:"

1989002369-095


